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Stochastic differential equations(SDE’s) play an important role in physics but existing numerical methods
for solving such equations are of low accuracy and poor stability. A general strategy for developing accurate
and efficient schemes for solving stochastic equations is outlined here. High-order numerical methods are
developed for the integration of stochastic differential equations with strong solutions. We demonstrate the
accuracy of the resulting integration schemes by computing the errors in approximate solutions for SDE’s
which have known exact solutions.

DOI: 10.1103/PhysRevE.70.017701 PACS number(s): 02.70.2c, 03.65.2w, 02.50.2r

Stochastic differential equations(SDE’s) have a long his-
tory in physics[1] and play an important role in many other
areas of science, engineering, and finance[1–3]. Recently a
number of computational techniques have been developed in
which high-dimensional deterministic equations are decom-
posed into lower-dimensional stochastic equations. Gisin and
Percival [4], for example, reduced a deterministic master
equation for the density matrix into stochastic equations for a
wave function. Similar approaches are being used to solve
the quantum many-body problem for bosons[5], fermions
[6], and vibrations[7]. These latter methods give rise to large
sets of coupled SDE’s which require fast and efficient nu-
merical integration schemes. Unfortunately and in spite of
their widespread use, the available numerical techniques[3]
for solving such equations are far less accurate than compa-
rable methods for solution of ordinary differential equations
(ODE’s).

In this paper we show how classical methods for solving
ODE’s, such as Runge-Kutta, can be adapted for the solution
of a class of SDE’s which should include many of the equa-
tions which arise in physical problems.

Consider a finite set of SDE’s,

dXt
j = ajsX t,tddt + o

k=1

m

bk
j sX t,tddWt

k, s1d

represented in Itô[1–3] form, where j =1, . . . ,n. Here X t
=sXt

1, . . . ,Xt
nd and thedWt

k are independent and normally dis-
tributed stochastic differentials with zero mean and variance
dt [i.e., sampledNs0,dtd]. The stochastic variablesWt

k are
Wiener processes. Now assume that the coefficientsaj andbk

j

have regularity properties which guarantee strong
solutions—i.e., thatXt

j are some fixed functions of the
Wiener processes and that they are differentiable to high or-
der. (Sufficient conditions for strong solutions are discussed
in Ref. [3].) We may then view the solutions of Eq.(1) as
functionsXt

j =Xjst ,Wt
1, . . . ,Wt

md of time and the Wiener pro-
cesses. The solutions can therefore be expanded in Taylor
series. Keeping terms of orderdt or less then gives

Xt+dt
j = Xt

j +
] Xt

j

] t
dt + o

k=1

m
] Xt

j

] Wt
kdWt

k +
1

2 o
k,l=1

m
]2Xt

j

] Wt
k ] Wt

l dWt
kdWt

l .

s2d

In a mean-square sense the product ofdifferentials dWt
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is equivalent todk,ldt in the Itô [1–3] formulation of stochas-
tic calculus. Making this replacement then yields
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which when compared to Eq.(1) allows us to identify the
first derivatives
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Now that these first-order derivatives are expressed in terms
of aj andbk

j , higher-order derivatives can be computed. Thus
a Taylor expansion of the solutions
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can be obtained for finite displacementsDt and DWt
k. This

Taylor expansion can then be employed to develop Runge-
Kutta algorithms and other integration schemes.

We illustrate the use of this approach by developing a
Runge-Kutta method for SDE’s which is closely related to
the classical Runge-Kutta scheme for ODE’s. For given dis-
placementsDt andDWt

k define

PHYSICAL REVIEW E 70, 017701(2004)

1539-3755/2004/70(1)/017701(4)/$22.50 ©2004 The American Physical Society70 017701-1



f jsX t,td =
] Xt

j

] t
Dt + o

k=1

m
] Xt

j

] Wt
kDWt

k = FajsX t,td

−
1

2o
k=1

m

o
i=1

n

bk
i sX t,td

] bk
j sX t,td
] Xt

i GDt + o
k=1

m

bk
j sX t,tdDWt

k

s7d

and consider the four-stage approximation
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whereti is the initial time andti+1= ti +Dt. Taylor expansion
of this scheme shows thatX ti+1

differs from the exact solu-
tion by terms of order higher thanDt2 [i.e., terms of higher
order than Dt2, DtsDWt

kd2, sDWt
kd4, sDWt

kd2sDWt
ld2, and

sDWt
kd2DWt

lDWt
i]. Thus, this stochastic Runge-Kutta algo-

rithm plays a role very similar to its classical counterpart
except that its order is reduced from 4 to 2. Generalizations
to higher-order Runge-Kutta schemes are straightforward,
and we will employ one such scheme in example calcula-
tions, but details will not be presented here.

While this approach is not completely general, since it
will fail for SDE’s with weak solutions or nondifferentiable
aj and bk

j , it should be applicable to a wide range of prob-
lems. It can, for example, be used to solve every one of the
equations with known solutions tabulated in Sec. 4.4 of Ref.
[3]. To illustrate the accuracy of the method and its improve-
ment over other known techniques for solving SDE’s we
now consider a number of these examples. We compare
known exact solutions with numerical solutions obtained us-
ing the Euler-Maruyama scheme[8], a derivative-free ver-
sion of the Milstein scheme due to Kloeden and Platen[9],
the classical Runge-Kutta scheme(8), and another Runge-
Kutta scheme obtained in the manner outlined above from an
eighth-order 12-step method for ODE’s due to Hairer and
Wanner[10] (this reproduces the stochastic Taylor expansion
up to and including terms of orderDt4). Stochastic differen-
tials were sampled using the routinesGASDEV andRAN2 [11].

As a first test of these methods consider an autonomous
nonlinear scalar equation

dXt = s1 + Xtds1 + Xt
2ddt + s1 + Xt

2ddWt, s9d

with just one Wiener process. In this example and in all
subsequent examples we assume all Wiener processes are
initially zero. The exact solution to this equation is[3]

Xt = tanft + Wt + arctansX0dg, s10d

as can be readily verified using Itô[1–3] calculus. In Fig. 1
we plot the error log10uXt−Xt

approximateu vs time computed with
a time step of 2.5310−5 for a single stochastic trajectory
with initial conditionX0=1 for the four different approxima-
tion schemes. The Milstein scheme(long-dashed curve)
shows some improvement over the primitive Euler-
Maruyama method(solid curve) but the order-2 Runge-Kutta
scheme (short-dashed curve) and order-4 Runge-Kutta
scheme(dotted curve) perform very much better.

The second example equation, also from Ref.[3], is an
autonomous linear scalar equation in two Wiener processes

dXt = a0Xtdt + b1XtdWt
1 + b2XtdWt

2, s11d

which has an exact solution

Xt = X0expHFa0 −
1

2
sb1

2 + b2
2dGt + b1Wt

1 + b2Wt
2J . s12d

The logarithm base 10 of the error for the different schemes,
calculated for initial conditionX0=1 and time step 0.01, is
plotted in Fig. 2. Here the Milstein scheme(long-dashed
curve) performs no better than the Euler-Maruyama method
(solid curve) but again the order-2 Runge-Kutta scheme
(short-dashed curve) and order-4 Runge-Kutta scheme(dot-

FIG. 1. log10uXt−Xt
approximateu vs time t for Eq. (9).

FIG. 2. log10uXt−Xt
approximateu vs time t for Eq. (11).
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ted curve) show greatly improved accuracy.(Note that the
apparent improvement in performance of all schemes at long
time is a result of the fact that the solution decays to zero.)

Example 3 is a set of two coupled linear autonomous
SDE’s
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with three Wiener processes. Here the solutions are

Xt
1 = exph− 2t + Wt

1 − Wt
2jcosWt

3,

Xt
2 = exph− 2t + Wt

1 − Wt
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Numerical solutions were calculated with a time step of 0.01
and errors inXt

1 are represented in Fig. 3. The order-2
Runge-Kutta scheme(long-dashed curve) and order-4
Runge-Kutta scheme(short-dashed curve) show improve-
ment over the Milstein scheme(solid curve). Similar results
were obtained forXt

2.
The examples we have considered so far have not had

explicitly time dependentaj and bk
j . Example 4 is a scalar

nonautonomous SDE

dXt = F 2

1 + t
Xt +
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2
s1 + td2Gdt +
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2
s1 + td2dWt, s15d

with known solution[3]

Xt = S 1 + t

1 + t0
D2

X0 +
1

2
s1 + td2sWt + t − t0d. s16d

Numerical solutions were calculated using the order-2
Runge-Kutta scheme and a time step of 0.001,t0=0, and
X0=1. The error is represented in Fig. 4. As in previous
examples a high accuracy is achieved in spite of the rapid
growth of the solution. The comparative smoothness of the
error curve reflects the fact that the deterministic part of the
solution dominates.

We now consider an example for which an exact solution
is known but which is expressed in terms of a stochastic

integral. Consider the stochastic Ginzburg-Landau equation

dXt = F− Xt
3 + Sa +

1

2
s2DXtGdt + sXtdWt, s17d

with solution [3]

Xt = X0
exphat + sWtj

Î1 + 2X0
2E

0

t

exph2as+ 2sWsjds

. s18d

We chosea=0.01, s=4, X0=1, anddt=5310−6. The sto-
chastic integral was computed using a Riemann sum with the
same time step. Error in the solution calculated with the
order-2 Runge-Kutta scheme is plotted in Fig. 5. Good accu-
racy is again obtained.

Finally, we consider an example in which the exact solu-
tion is expressed in terms of an Itô[1–3] stochastic integral.
Consider the SDE

dXt = − tanhXtSa +
1

2
b2sech2XtDdt + b sechXtdWt,

s19d

with exact solution[3]

FIG. 3. log10uXt
1−Xt

1 approximateu vs time t for Eq. (13). FIG. 4. log10uXt−Xt
approximateu vs time t for Eq. (15).

FIG. 5. log10uXt−Xt
approximateu vs time t for Eq. (17).
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Xt = arcsinhSe−at sinh X0 + e−atE
0

t

easdWsD . s20d

We seta=0.02,b=1, X0=1, anddt=1310−5. The stochastic
integral in the exact solution was calculated using the Itô
[1–3] integral formula with the same time step. The error in
the solution calculated with the order-2 Runge-Kutta scheme
is plotted in Fig. 6. As in all previous cases considered the
accuracy is very good.

Thus, the approach to solving(SDE’s) advocated here
works very well for the wide range of examples we have
considered. The order-4 Runge-Kutta method is clearly much
more accurate than the order-2 Runge-Kutta scheme. It also
has an embedded lower-order Runge-Kutta scheme which
can be employed to obtain an error estimate suitable for step
size control[10]. Hence is should be possible to use variable
step sizes to ensure the accuracy of the solution. This sort of
implementation is essential for solving equations which do
not have known exact solutions. The only subtlety in devel-
oping such a method is ensuring that the correct Wiener path

is maintained even when a step must be rejected. This is
achieved[12] by dividing the rejected differentialsdt and
dWt

k into two segments:dt/2 anddWt
k/2−y followed bydt/2

and dWt
k/2+y where y is sampledNs0,dt/2d. To illustrate

the accuracy of the resulting variable stepsize algorithm we
solve the Gisin-Percival[4] stochastic wave equation for the
nonlinear absorber(Eq. 4.2 of Ref.[4])

ducl = 0.1sa† − aducldt + s2a†2a2 − a†2a2 − a†2a2ducldt

+ Î2sa2 − a2̄ducldWt, s21d

with initial state ucs0dl= u0l. In Fig. 7 we plot the error in
mean occupation numbernt=Mfkcua†auclg vs time(Fig. 5 of
Ref. [4]) whereMf·g denotes an average over stochastic re-
alizations. Here 1000, 10 000, and 20 000 trajectories were
used to calculate the solid curve, dashed curve, and dotted
curve, respectively. Convergence to the exact result is good.
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