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Numerical methods for stochastic differential equations
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Stochastic differential equatioiSDE’s) play an important role in physics but existing numerical methods
for solving such equations are of low accuracy and poor stability. A general strategy for developing accurate
and efficient schemes for solving stochastic equations is outlined here. High-order numerical methods are
developed for the integration of stochastic differential equations with strong solutions. We demonstrate the
accuracy of the resulting integration schemes by computing the errors in approximate solutions for SDE’s
which have known exact solutions.
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Stochastic differential equatioiSDE’S) have a long his- In a mean-square sense the productidferentials dV{YdV\/t
tory in physics[1] and play an important role in many other is equivalent tag dt in the 1t6 [1-3] formulation of stochas-
areas of science, engineering, and finaficed]. Recently a tic calculus. Making this replacement then yields
number of computational techniques have been developed in
which high-dimensional deterministic equations are decom- m
posed into lower-dimensional stochastic equations. Gisin and —xi —X= 0_XJ _2 192)(] E o
Percival [4], for example, reduced a deterministic master X”d‘ o™ X4 = at 2450 VV{(Z k=1 VV{(
equation for the density matrix into stochastic equations for a
wave function. Similar approaches are being used to solve 3
the quantum many-body problem for bosdig, fermions
[6], and vibrationg7]. These latter methods give rise to large which when compared to Eql) allows us to identify the
sets of coupled SDE’s which require fast and efficient nuirst derivatives
merical integration schemes. Unfortunately and in spite of
their widespread use, the available numerical technidies

]
for solving such equations are far less accurate than compa- 9% =bl(Xpt), (4)
rable methods for solution of ordinary differential equations aM
(ODEs).
In this paper we show how classical methods for solving m .
ODE'’s, such as Runge-Kutta, can be adapted for the solution al (X, 1) - 12 X = al(X,1)
of a class of SDE’s which should include many of the equa- at b 2ic1 0 sz v
tions which arise in physical problems.
Consider a finite set of SDE’s, abl (X 1)
- —E E bi(Xe )5 (5)

. . m ) 2k—1| =1 t
dx] = al (X, tydt+ 2 b(X, AW, 1)
k=1
_ _ Now that these first-order derivatives are expressed in terms
represented in It§1-3] form, wherej=1,... n. Here X;  of al andbl, higher-order derivatives can be computed. Thus
=(X}t,....X") and thedV\/‘ are mdependent and normally dis- a Taylor expansion of the solutions
tributed stochastic dlfferentlals with zero mean and variance

dt [i.e., sampled\(0,dt)]. The stochastic variabléé/t‘ are X mooi

Wiener processes. Now assume that the coefficeraadb), )(t+ N Xt +—LAt+ D 9% AM

have regularity properties which guarantee strong at k=1 3V\4(

solutions—i.e., thatX] are some fixed functions of the

Wiener processes and that they are differentiable to high or- — 2L AWEAW + - 6
der. (Sufficient conditions for strong solutions are discussed ZK,E1 Wk W| ©

in Ref. [3].) We may then view the solutions of E¢l) as
functionsX!=X;(t, W, ... ,W{") of time and the Wiener pro-
cesses. The solutions can therefore be expanded in Tayl
series. Keeping terms of orddt or less then gives

can be obtained for finite displacememit and AV\/k This

qraylor expansion can then be employed to develop Runge-

Kutta algorithms and other integration schemes.

JXi T 2 We illustrate the use of this approach by developing a
t t . .

\deW > E Wk WdeV\/ Runge-Kutta method for SDE’s which is closely related to
t ki=1 ¢ the classical Runge-Kutta scheme for ODE’s. For given dis-

(2)  placementsit and AWK define

X, g =X +2 tdt+2
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aX Moo .

f(X, 1) = — AL+ > — AWK = | al(X,,t

=2 kzlawk ! (Xt

33 bL(xt,owpt + 3 B, DAWE

k=1i=1 t k=1
()
and consider the four-stage approximation
Kjlz fj(Xti'ti),
2 1., 1
Ke=1 | Xy + zK5 5 + ZAt,
O 2 2
3_ 1 2 1
KJ _fl Xti+§K ,ti+§At f
K?: fi(Xy, + K3 i),
1 1 2 3 4
Xti+1:Xti+g(K + 2K+ 2K°+ K%, (8)

wheret; is the initial time and;,;=t;+At. Taylor expansion
of this scheme shows that,  differs from the exact solu-
tion by terms of order higher tha#t? [i.e., terms of higher
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FIG. 1. loggX,—XaPProXimat¢ ys timet for Eq. (9).

X, = tar{t + W, + arctariX,)], (10)

as can be readily verified using I{&—3] calculus. In Fig. 1
we plot the error logy|X,— XZPPXMaf ys time computed with

a time step of 2.% 10°° for a single stochastic trajectory
with initial condition X,=1 for the four different approxima-
tion schemes. The Milstein schem@&ng-dashed curye
shows some improvement over the primitive Euler-
Maruyama methodsolid curve but the order-2 Runge-Kutta
scheme (short-dashed curye and order-4 Runge-Kutta
schemgdotted curve perform very much better.

order than At?, At(AWZ, (AWH?4 (AWH2(AW)?, and The second example equation, also from R&f, is an
(AWH2AWAW]. Thus, this stochastic Runge-Kutta algo- autonomous linear scalar equation in two Wiener processes
rithm plays a role very similar to its classical counterpart _

except that its order is reduced from 4 to 2. Generalizations dX, = 8gXdt-+ by X AW + X AW, (11)
to higher-order Runge-Kutta schemes are straightforwardyhich has an exact solution
and we will employ one such scheme in example calcula-
tions, but details will not be presented here.

_ 1 5. .2
While this approach is not completely general, since it Xt_erXpHao_ 2(b1+b2)]t+b1\/\/t1+b2\/\/t2}. (12)
will fail for SDE’s with weak solutions or nondifferentiable

a andbl, it should be applicable to a wide range of prob- The logarithm base 10 of the error for the different schemes,
lems. It can, for example, be used to solve every one of théalculated for initial conditiorXo=1 and time step 0.01, is
equations with known solutions tabulated in Sec. 4.4 of Refplotted in Fig. 2. Here the Milstein schenieong-dashed
[3]. To illustrate the accuracy of the method and its improve-curve) performs no better than the Euler-Maruyama method
ment over other known techniques for solving SDE’s we(solid curvg but again the order-2 Runge-Kutta scheme
now consider a number of these examples. We compareéhort-dashed curyeand order-4 Runge-Kutta scheruot-
known exact solutions with numerical solutions obtained us-
ing the Euler-Maruyama schenj8], a derivative-free ver-
sion of the Milstein scheme due to Kloeden and Plg&n
the classical Runge-Kutta schen®, and another Runge-
Kutta scheme obtained in the manner outlined above from an
eighth-order 12-step method for ODE’s due to Hairer and
Wanner[10] (this reproduces the stochastic Taylor expansion
up to and including terms of ordext%). Stochastic differen-
tials were sampled using the routinessDEV andrRAN2 [11].

As a first test of these methods consider an autonomous
nonlinear scalar equation

2

dX = (L +X)(L+X)dt+ (1 +X)dW, 9

with just one Wiener process. In this example and in all ‘o 2
subsequent examples we assume all Wiener processes are
initially zero. The exact solution to this equation[&
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FIG. 2. loggX,—XaPProXimal¢ ys timet for Eq. (11).
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FIG. 3. loggX!—X} approximate yq timet for Eq. (13).

ted curve show greatly improved accuracgNote that the
apparent improvement in performance of all schemes at long
time is a result of the fact that the solution decays to zero.

Example 3 is a set of two coupled linear autonomous
SDE’s
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FIG. 4. loggX,—X3PProximat¢ ys timet for Eq. (15).

integral. Consider the stochastic Ginzburg-Landau equation

dXx = {— X3+ <a+ %&)xt]dw oXdW,, (17)

with solution[3]

3
dxt=- Ethdt + XEWE = XHdWP = XPdWE,

3
dXe=- 5xfolt +X2dWE - X2dWE + XHdWE,  (13)

expg{at + oW}

t
\/1+2x§f
0

Xi=Xo (18

exp{2as+ 20\W}ds

with three Wiener processes. Here the solutions are

X = exp{- 2t + W - Wi cosWE,

We chosea=0.01, 0=4, X,=1, anddt=5x 1075, The sto-
chastic integral was computed using a Riemann sum with the
same time step. Error in the solution calculated with the

order-2 Runge-Kutta scheme is plotted in Fig. 5. Good accu-
racy is again obtained.

Finally, we consider an example in which the exact solu-
n is expressed in terms of an Ifd—3] stochastic integral.
Consider the SDE

X2 = exp{— 2t + W = Wa}sin W2,

Numerical solutions were calculated with a time step of O.OJIio
and errors inXt1 are represented in Fig. 3. The order-2
Runge-Kutta scheme(long-dashed curye and order-4
Runge-Kutta schemegshort-dashed curyeshow improve-
ment over the Milstein schemeolid curvg. Similar results
were obtained fox?.

The examples we have considered so far have not had
explicitly time dependent/ and bl. Example 4 is a scalar
nonautonomous SDE

(14)

1
dx,=- tanhxt<a+ Ebzsecﬁxt>dt+ b sechX,dW,,
(19

with exact solution 3]

2 1 1 2
dX, = [mXﬁ5(1+t)2}dt+§(1+t)zdwtv (15 |

with known solution[3]

1+t)? 1
Xt=<1Tto> Xo+ S(L+1)* (W, +t—to).

> (16)

Numerical solutions were calculated using the order-2
Runge-Kutta scheme and a time step of 0.0Q%0, and
Xo=1. The error is represented in Fig. 4. As in previous
examples a high accuracy is achieved in spite of the rapid
growth of the solution. The comparative smoothness of the
error curve reflects the fact that the deterministic part of the
solution dominates.

We now consider an example for which an exact solution
is known but which is expressed in terms of a stochastic

FIG. 5. loggX,—XaPPoXimal¢ ys timet for Eq. (17).
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FIG. 6. loggX,—XaPProximat¢ ys timet for Eq. (19). FIG. 7. loggn—ngPP"™M§ vs timet for Eq. (21).

t is maintained even when a step must be rejected. This is
easdws). (200  achieved[12] by dividing the rejected differentialdt and

dW into two segmentsdt/2 anddW,/2 -y followed bydt/2
We seta=0.02,b=1, X,=1, anddt=1x 105, The stochastic and dV\/{/2+y wherey is §ampleg|N(0,dt/2). 'To |Ilustrate
integral in the exact solution was calculated using the Itgfh€ accuracy of the resulting variable stepsize algorithm we
[1-3] integral formula with the same time step. The error insolv_e the Gisin-PercivgHl] stochastic wave equation for the
the solution calculated with the order-2 Runge-Kutta schem&onlinear absorbefEq. 4.2 of Ref[4])
is plotted in Fig. 6. As in all previous cases considered the _ . 2.2 12,2 F22
accuracy is very good. dly) =0.1a" - a)|)dt+ (2a a'%a® - a'%a?)|y)dt

Thus, the approach to solvingGDE's) advocated here +v"§(a2— _2)| AW, (21)
works very well for the wide range of examples we have
considered. The order-4 Runge-Kutta method is clearly muchvith initial state|#(0))=|0). In Fig. 7 we plot the error in
more accurate than the order-2 Runge-Kutta scheme. It alspean occupation numbey=M[{y{a'a|)] vs time(Fig. 5 of
has an embedded lower-order Runge-Kutta scheme whicRef. [4]) whereM[-] denotes an average over stochastic re-
can be employed to obtain an error estimate suitable for stegijzations. Here 1000, 10 000, and 20 000 trajectories were
size control[10]. Hence is should be possible to use variableysed to calculate the solid curve, dashed curve, and dotted

step sizes to ensure the accuracy of the solution. This sort @{rve, respectively. Convergence to the exact result is good.
implementation is essential for solving equations which do

not have known exact solutions. The only subtlety in devel- The author acknowledges the support of the Natural Sci-
oping such a method is ensuring that the correct Wiener patlnces and Engineering Research Council of Canada.

X = arcsin?(e‘aIt sinh Xg + e‘atf
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